

Surface roughness and microhardness of conventional and CAD/CAM resins subjected to different polishing systems and to erosive-abrasive challenge Frederico G. Kokol, D.D.S.*, Letícia Montouro Reis, D.D.S., Aryvelto Miranda Silva, Ph.D., Edson Alves de Campos, Ph.D. São Paulo State University - School of Dentistry, Araraquara, SP-Brazil

INTRODUCTION

- The growing prevalence of erosive tooth wear is apparently associated with lifestyle and dietary habits and has stepped up the search for preventive and restorative measures.
- Resin composites have been widely used in cases in which tooth structure loss is caused by erosive tooth wear.
- Quite recently, technological breakthroughs aimed at making clinical practice easier have led to the development of resin composites available as CAD/CAM blocks, expanding the use of resin composites in indirect restorations.
- The final surface smoothness of restorations made with resin composite, obtained through finishing and polishing procedures, has been identified as one of the determinants of their longevity.

OBJECTIVES

MICROHARDNESS

Table 3. Mean and standard deviation obtained for Vickers hardness number (VHN) of conventional and CAD/CAM resin composites subjected to different

surface treatments and to the erosive-abrasive challenge.

Material	Surface treatment	Baseline	After erosive-abrasive challenge
Conventional resin composite (GrandioSO)	Polishing disc	116.21 ±13.53a 121.72 ±10.41a	
	Polishing disc + diamond polisher	125.31 ±13.48a	135.31 ±10.39₃
CAD/CAM resin composite (Grandio blocs)	Polishing disc	115.15 ±12.76a	129.31 ±9.43a
	Polishing disc + diamond polisher	142.22 ±12.29 _a	148.03 ±9.86a

Comparisons were made at the same line, ^{a-b} Different lowercase letters indicate statistically significant difference (Bonferroni, p≤0.016).

SURFACE TOPOGRAPHY

Surface topography was assessed by scanning electron microscopy (SEM)

 The aim of this in vitro study was to evaluate the effects of erosive-abrasive challenge and polishing systems on the surface roughness and microhardness of conventional and CAD/CAM resin composites.

METHODS & MATERIAL

Study design

A randomized laboratory study of the following factors was conducted: a) type of resin – either conventional or CAD/CAM; b) polishing system: polishing disc or disc + diamond polisher, and c) assessment period: before or after the erosive-abrasive challenge. The response variables were surface roughness (Ra) and Vickers hardness number (VHN).

Table 1. Materials used in the study

MATERIAL	MANUFACTURER	DESCRIPTION	
Grandio blocs	VOCO GmbH, Cuxhaven, Germany	Nanohybrid composite blocks for CAD/CAM milling	
GrandioSO	VOCO GmbH, Cuxhaven, Germany	Nanohybrid composite	
Sof-Lex Pop	3M Oral Care - Maplewood, Minnesota, USA	Polishing disc	
Dimanto	VOCO GmbH, Cuxhaven, Germany	Diamond polisher	

and revealed wear on the surface after the erosive-abrasive challenge.

CAD/CAM resin polished with polishing disc before (A) and after (B) erosive-abrasive challenge.

CAD/CAM resin polished with polishing disc + diamond polisher before (C) and after (D) erosive-abrasive challenge.

Conventional resin polished with polishing disc before (E) and after (F) erosive-abrasive challenge.

- Specimens of Grandio blocs and GrandioSO were made with a thickness of 2mm.
- The specimens obtained from each material were randomized into two polishing systems:

Polishing discs (Sof-lex pop on), or polishing discs + diamond polisher (Dimanto) (n=8).

- The erosive-abrasive challenge was performed for 5 days, with four daily cycles, alternating between 0.3% citric acid solution (5min) and brushing (45 cycles/15 s) in a toothbrushing machine.
- Surface roughness and microhardness were assessed before and after the erosiveabrasive challenge with roughness meter and Vickers microhardness tester, respectively.
- Surface topography was assessed by scanning electron microscopy (QuantaTM 250 SEM, Oregon, USA) equipped with INCA software (Oxford Instruments Analytical, UK) at 5000X magnification.
- Repeated-measures analysis of variance (ANOVA) and Bonferroni were applied for data analysis (α =0.05).

RESULTS

SURFACE ROUGHNESS

Table 2. Mean and standard deviation obtained for surface roughness (Ra - μ m) of conventional and CAD/CAM resin composites subjected to different surface

Conventional resin polished with polishing disc + diamond polisher before (G) and after (H) erosive-abrasive challenge.

DISCUSSION

- Our study demonstrated that polishing disc + diamond polisher provides a smoothness pattern for conventional resin composite.
- The use of only polishing discs on CAD/CAM resin promoted a smoother surface condition probably by cutting with efficiency the filling particles on the resin.
- When the diamond polisher was applied on CAD/CAM resins an increase on Ra values were observed. The manufacturer of the diamond polisher suggests that by changing the amount of pressure exerted, it can determine the abrasion performance of the polisher.
- Acid challenge can cause erosion on the resin surface which, when combined with toothbrushing immediately thereafter, can potentially wear down the resin surface, eventually making it smoother.
- When the same material was subjected to the same surface treatment, the erosive-abrasive challenge did not cause significant changes in microhardness, and the probable explanation to that lies with the concentration and pH of the citric acid used in our study.

CONCLUSION

- The erosive-abrasive challenge influenced the surface roughness of the tested materials.
- Considering the same resins and polishing systems, microhardness values had no statistical difference when materials were subjected to erosive-abrasive challenge.

treatments and to erosive-abrasive challenge.

Material	Surface treatment	Baseline	After erosive-abrasive challenge
Conventional resin composite (GrandioSO)	Polishing disc	0.35 ±0.11b	0.24 ±0.03a
	Polishing disc + diamond polisher	0.26 ±0.07 _a	0.19 ±0.06ª
CAD/CAM resin composite (Grandio blocs)	Polishing disc	0.12 ±0.02a	0.23 ±0.04b
	Polishing disc + diamond polisher	0.27 ±0.06a	0.23 ±0.04a
omparisons were made at the same	ine, ^{a-b} Different lowercase letters indic	ate statistically sig	gnificant difference (Bonferroni, p≤0.02

REFERENCES

1-Buzalaf MAR, Magalhães AC, Rios D. Prevention of erosive tooth wear: targeting nutritional and patient- related risks factors. Br Dent J 2018;224(5):371-378.

2-Peutzfeldt A, Jaeggi T, Lussi A. Restorative therapy of erosive lesions. Monogr Oral Sci 2014;25:253-61.

3-Viana Í, Alania Y, Feitosa S, Borges AB, Braga RR, Scaramucci T. Bioactive Materials Subjected to Erosion/Abrasion and Their Influence on Dental Tissues. Oper Dent 2020. doi: 10.2341/19-102-L. Epub ahead of print.
4-Ruse ND, Sadoun MJ. Resin-composite blocks for dental CAD/CAM applications. J Dent Res 2014;93(12):1232-4.
5-Tunac AT, Celik EU, Yasa B. Two-year performance of CAD/CAM fabricated resin composite inlay restorations: A randomized controlled clinical trial. J Esthet Restor Dent 2019;31(6):627-638.
6-Kubo S. Kawasaki A. Hayashi Y. Eactors associated with the longevity of resin composite restorations. Dent Mater J.

6-Kubo S, Kawasaki A, Hayashi Y. Factors associated with the longevity of resin composite restorations. Dent Mater J 2011;30(3):374-83.

Presented at the 99th Annual Session of the Greater New York Dental Meeting in 2023.